Cytotoxic Activity of Complexes Formed as a Result of Interaction between Tumor Necrosis Factor- α and α_2 -Macroglobulin

I. E. Bondarev, V. V. Dorofeikov, I. S. Freidlin, T. S. Freidlin, and I. G. Shcherbak

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 121, No. 6, pp. 673-675, June, 1996 Original article submitted February 26, 1994

The conditions under which complexes are formed between tumor necrosis factor- α and α_2 -macroglobulin are examined in different molar ratios of ingredients with subsequent isolation of formed complexes using gel-filtration and testing of their cytotoxic activity. It is found that tumornecrosis factor- α binds with the activated (F-form) but not with the native (S-form) α_2 -macroglobulin and the optimal molar ratio is about 2:1. The cytotoxic activity of such complexes is twice the baseline cytotoxic activity of free tumor necrosis factor- α .

Key Words: tumor necrosis factor-α; α₂-macroglobulin; cytotoxic activity

Two forms of the protease inhibitor α_2 -macroglobulin (α_2 -MG) [1], the S-form (Slow) and F-form (Fast), have recently been shown to be able to form complexes with interleukin-1, interleukin-2, interleukin-6, tumor necrosis factor- α (TNF- α), defensins, and other biologically active polypeptides [2-7], but the biological activity of the complexes has been not systematically examined, although there are data on a changed activity of these molecules in complexes with α_2 -MG [5].

Most of the studies of which we are aware deal only with the fact of α_2 -MG binding with biologically active molecules, mainly with the use of radioactively labeled forms, which can result in conformational changes of these molecules and affect the intensity of complex formation with α_2 -MG when an iodine label is used.

The aim of the present study was to investigate the interaction of S- and F-forms of α_2 -MG with recombinant TNF- α without radioactive label and to

compare the cytotoxic activity of complexes with the activity of the initial TNF- α .

MATERIALS AND METHODS

To isolate α_2 -MG we used a new technique we devised of "gentle" freeing of fresh donor blood plasma. The procedure included gel-filtration of whole citrate plasma on a TSK-60 HW column of 2.5×80 cm and rechromatography of concentrated α_2 -MG preparation. The last step consisted of ion-exchange chromatography on diethylaminoethyl cellulose. The purity of the preparation was no less than 95% according to polyacrylamide gel electrophoresis and its yield was 50-55%. Since the procedure of α_2 -MG sedimentation by ammonium sulfate and polyethyleneglycol was absent, practically all the obtained α_2 -MG was in the S-form, as was confirmed by electrophoresis. The amount of α,-MG in purified preparations was assessed both according to protein (Lowry method) and according to the proportion of trypsin added in excess, which bound with α_2 -MG at a molar ratio of 2:1. Bound trypsin was detected by the rate of its catalyzed N-benzoyl-L-arginine-para-

Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg; I. P. Pavlov St. Petersburg Medical Institute

Form and quantity of α_2 -MG, nM	Quantity of TNF-α, nM (U)	Cytotoxic activity of fraction pool, U		
	Quality of Try -a, this (0)	high-molecular	low-molecular	
S-form, 700	350 (5 000)	0	5 000	
	700 (10 000)	0	10 000	
F-form, 700	350 (5 000)	1 250	3 750	
	700 (10 000)	2 500	7 500	

TABLE 1. Cytotoxic Activity of Pools of High- and Low-Molecular Fractions after Gel-Filtration of Incubation Mixtures of α_2 -MG and TNF- α in Different Molar Ratios

nitroanilide hydrolysis at 37°C after free enzyme was blocked by soybean inhibitor. The F-form of α_2 -MG was obtained by treating native α_2 -MG with monomethylamine for 60 min at 37°C. The final concentration of monomethylamine was 0.5 M. Under these conditions α_2 -MG fully lost its capacity to bind with proteinases. After the processing with monomethylamine, 5% polyacrylamide gel electrophoresis revealed one band moving more quickly than the initial preparation. A standard commercial preparation Refnolin (Fermentas) with an activity of 1.7×10 U/ mg was used as recombinant human TNF-α. Gelfiltration was carried out with buffered physiological saline (pH 7.3) on the column with TSK-60 HW gel. The rates and volumes of elution were chosen so that α_3 -MG and TNF- α left the column in different fractions in the separated gel-filtration. TNF- α activity was determined by the standard cytotoxicity test. One unit of activity was taken as the dose of TNF-a which caused one-half of the maximal lysis of mouse L929 fibroblasts in the presence of actinomycin D stained with crystal violet [7]. Each experiment was performed at least twice. The data were processed statistically by nonparametric methods.

RESULTS

S- and F-forms of α_2 -MG were incubated with TNF- α for 1 h at 37°C and then the incubation mixture was subjected to gel-filtration. High-molecular fractions corresponding to the peak of the α_2 -MG yield were combined and examined for cytotoxic activity. The remaining low-molecular fractions were also

combined and their cytotoxic activity was measured. It was found that $TNF-\alpha$ binds partially with the F-form but not with the S-form of α_2 -MG (Table 1). Most of the free $TNF-\alpha$ leaves the column with the low-molecular pool.

A decrease of the cytotoxic activity of the secondary high-molecular fractions to 300 U and synchronous elevation of the cytotoxic activity of the secondary low-molecular complexes from 0 to 900 U was noted after rechromatography of the high-molecular fractions which contain complexes of TNF- α with the F-form of α_2 -MG with an initial cytotoxic activity of 1250 U. Therefore, it may be assumed that the formed TNF- α/α_2 -MG complexes are not stable and are partially destroyed during gel-filtration.

To ascertain the quantitative ratios of ingredients in complex formation the F-form of α_2 -MG was incubated with TNF- α in different ratios. The volume of incubation mixture was the same in all cases. After gel-filtration the high-molecular fractions were combined and their cytotoxic activity was determined. Incubation of the same amount of TNF-α with ascending quantities of α₂-MG results in a progressive increase of the cytotoxic activity of highmolecular substances until the molar ratio of α ,-MG and TNF- α attains 1:2 (Table 2). It may be that in this ratio of ingredients α_2 -MG binds all the TNF- α in the reaction mixture. A markedly lower cytotoxic activity of high-molecular fractions after gel-filtration as compared to the activity of added TNF- α may be due to the breakdown of the majority of the α_2 - $MG/TNF-\alpha$ complexes in gel-filtration and to the

TABLE 2. Cytotoxic Activity of Pools of High-Molecular Fractions of Incubation Mixtures of the F-Form of α_2 -MG with TNF- α in Different Molar Ratios

Quantity of TNF-α, nM	Cytotoxic activity (U) for different amounts of α_2 -MG, nM						
	44	88	175	350	700	1 400	2 800
350	312	625	1 250	1 250	1 250	1 250	1 250
700	312	625	1 250	2 500	2 500	2 500	2 500
1 400	312	625	1 250	2 500	5 000	5 000	5 000
2 800	312	625	1 250	2 500	5 000	10 000	10 000

exit of free TNF- α with the low-molecular fractions. From the analysis of the quantitative ratios of ingredients it was concluded that one molecule of the F-form of α_2 -MG can bind with two molecules of TNF- α .

To determine the cytotoxic activity of forming complexes, the F-form of α_2 -MG was incubated with TNF- α at a molar ratio of 1:2 and then the incubation mixture was examined in the cytotoxicity test without preliminary gel-filtration. It was found that TNF- α in a complex with the F-form of α_2 -MG possesses twice the cytotoxic activity as the initial TNF- α (Table 3).

Thus, TNF- α reversibly and noncovalently binds with the F- but not the S-form of α_2 -MG and its cytotoxic activity is preserved. The findings show that one molecule of α_2 -MG combines with two molecules of TNF-a and the cytotoxic activity of such complexes is twice as high as that of baseline TNF- α . The results demonstrate that TNF- α , like other cytokines, can form large molecular complexes by associating with plasma proteins, notably α_2 -MG. The fact that the cytotoxic activity of such complexes is twice as high as that of free TNF- α

TABLE 3. Cytotoxic Activity of Incubation Mixture of the F-Form of α_2 -MG with TNF- α in 1:2 Molar Ratio

Quantitative ratios α_2 -MG/TNF- α , nM	Cytotoxic activity, U			
	of initial TNF- α	of incubation mixture of α_2 -MG with TNF- α		
175/350	5 000	10 000		
350/700	10 000	20 000		

molecules underscores their physiological and pathological significance.

REFERENCES

- A. J. Barret, M. A. Brown, and C. A. Sayers, *Biochem. J.*, 181, 401 (1979).
- 2. W. Borth and T. A. Luger, J. Biol. Chem., 264, 5818 (1989).
- 3. W. Borth and M. Teodorescu, Immunology, 57, 367 (1986).
- 4. K. James, Immunol. Today, 11, 163 (1990).
- A. Panyutich and T. Ganz, Am. J. Respir. Cell Mol. Biol., 5, 101 (1991).
- H. Ronne, H. Anude, et al., Biochem. Biophys. Res. Commun., 87, 330 (1979).
- 7. A. Woolenberg et al., Am. J. Pathol., 138, 265 (1991).